FAO workshop - Santa Marta (Colombia), July 2024

Using the deforisk QGIS plugin for making and comparing deforestation risk maps

Ghislain VIEILLEDENT¹ Thomas ARSOUZE¹ FAO team²

[1] Cirad UMR AMAP, [2] FAO Rome and Latin America

lodels and validation

Usage 000000 Conclusion 0000

Outline

The deforisk QGIS plugin

- Aim and specificities
- Website and documentation
- Installation
- 2 Data preparation
 - Get variables
 - Forest cover change data
 - Spatial explanatory variables
 - Models and validation
 - Benchmark model
 - Forestatrisk models
 - Moving window models
 - Validation

4 Usage

- Allocating deforestation
- Subnational jurisdictions
- User's data
- 5 Conclusion
 - Workshop agenda
 - Perspectives

Outline

The deforisk QGIS plugin

- Aim and specificities
- Website and documentation
- Installation
- 2 Data preparation
 - Get variables
 - Forest cover change data
 - Spatial explanatory variables
 - Models and validation
 - Benchmark model
 - Forestatrisk models
 - Moving window models
 - Validation

4) Usage

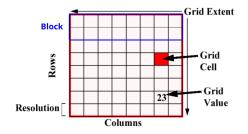
- Allocating deforestation
- Subnational jurisdictions
- User's data
- 5 Conclusion
 - Workshop agenda
 - Perspectives

Aims

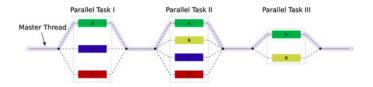
- Provide a tool to create and compare deforestation risk maps.
- At the jurisdictional level.
- Following Verra's methodology for certification.
- Allocating deforestation to projects within the jurisdiction.

- Open-source and Python based : transparency, reproducibility.
- Computationally efficient :
 - Processing raster by blocks.
 - Running tasks in parallel.
- OS independent : Windows, Linux, MacOS.
- Should run on any computer with average performance.
- Performant alternative statistical models (iCAR).
- Fully documented and translated (English, Spanish, French).
- Help with data preparation.
- Should be (relatively) easy to use.

Python based


The deforisk plugin relies on four Python packages developed specifically for modelling deforestation :

- geefcc : make forest cover change maps from Google Earth Engine (GEE).
- pywdpa : downloading protected areas from the World Database on Protected Areas (WDPA).
- forestatrisk : model deforestation and predict the spatial deforestation.
- riskmapjnr : risk maps following Verra JNR methodologies.


Processing raster by blocks

- Raster files of forest cover change and explanatory variables might occupy a space of several gigabytes on disk.
- Processing such large rasters in memory can be prohibitively intensive on computers with limited RAM.
- Functions used in the deforisk plugin process large rasters by blocks of pixels representing subsets of the raster data.
- This makes computation efficient, with low memory usage.

Running tasks in parallel

- State-of-the-art approach to select the best risk map implies repeating tasks (model, periods).
- To save computation time, the deforisk plugin use the QGIS task manager.
- Allows running several analysis in parallel.

Website and documentation

The website includes all the documentation to use the plugin :

- Installation page : How to install the plugin?
- Plugin API page : What is the meaning of each parameter?
- Get started page. How to start using the plugin on a small area of interest ?
- Articles' page. How can I use the plugin for specific cases (subnational jurisdictions, user's data)?
- References' page : A page with reference documents including presentations.

https://deforisk-qgis-plugin.org

Installation

Reduced number of steps for installing the plugin :

- Install QGIS and GDAL on you system (using DSGeo4W on Windows).
- Install the forestatrisk and riskmapjnr Python packages using pip.
- Download and install the deforisk plugin from QGIS.
- (Unix-like systems only : install OSM tools).

lodels and validation

Usage 000000 Conclusion 0000

Outline

The deforisk QGIS plugin

- Aim and specificities
- Website and documentation
- Installation
- Data preparation
 - Get variables
 - Forest cover change data
 - Spatial explanatory variables

Models and validation

- Benchmark model
- Forestatrisk models
- Moving window models
- Validation

4) Usage

- Allocating deforestation
- Subnational jurisdictions
- User's data
- 5 Conclusion
 - Workshop agenda
 - Perspectives

Get variables

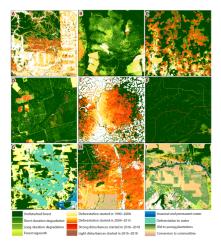
- Functions to help prepare the data for modelling deforestation.
- Two different sources for **forest** cover change (GFC or TMF).
- Spatial explanatory variables describing forest accessibility and land tenure (altitude, slope, distance to roads, protected areas, etc.).

Ψ		Deforisk		≜ (8
Get variables	Benchmark	FAR models	MW models	Validation	
Download and	compute vari	ables			
Working direc	tory				
Area Of Intere	est				
Years	1	2000, 2010, 2020			
Forest data so	burce t	mf			
Tree cover thr	reshold (%)	50			
Tile size (dd)	1	L.0			
Country/state	ISO code	ИTQ			
Earth Engine	access				
WDPA access					
Projection EPS	6G code	PSG:5490			
				Run	
	documentati	ails on arguments on: <mark>sk-qgis-plugin.org</mark>		ı's	

GFC dataset

- Hansen et al. 2013.
- Global dataset encompassing all forest types.
- Tree cover and annual tree cover loss.
- 30m resolution, from 2000 on.
- Data : https://glad.earthengine.app/view/global-forest-change

- Vancutsem et al. 2021. Tropical Moist Forests (evergreen forest, no dry deciduous forests).
- 30m resolution, from 1990 on.
- Tropical deforestation was underestimated (-33% in 2000–2012, Hansen et al. 2013), especially in Africa.
- Data : https://forobs.jrc.ec.europa.eu/TMF/.



Models and validation

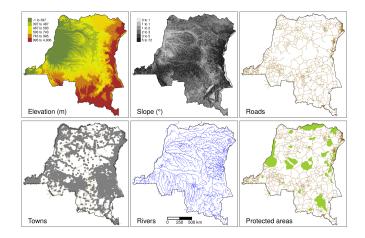
Usage 000000 Conclusion 0000

TMF dataset

• Precise enough to visually identify the causes of deforestation (logging, fires, agriculture)

Spatial variables

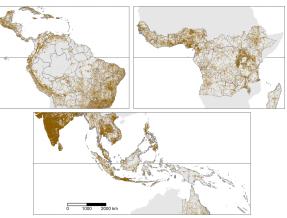
Conclusion 0000


The plugin helps computing eight explanatory variables.

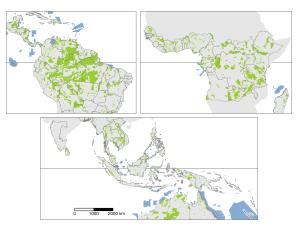
Product	Source	Variable derived	Unit	Resolution (m)	Date
Forest maps (2000-2010- 2020)	Vancutsem et al. 2021	distance to forest edge	m	30	-
		distance to past deforestation	m	30	-
Digital Elevation Model	SRTM v4.1 CSI-CGIAR	elevation	m	90	-
		slope	degree	90	-
Highways	OSM- Geofabrik	distance to road	m	150	March 2021
Places		distance to town	m	150	March 2021
Waterways		distance to river	m	150	March 2021
Protected areas	WDPA	presence of protected area	-	30	March 2021

Models and validation

Usage 000000 Conclusion 0000


Spatial variables

Spatial explanatory variables in DRC


Roads

- OpenStreetMap (OSM)
- "motorway", "trunk", "primary", "secondary" and "tertiary" roads
- 3.6 million roads from OSM

Protected areas

- PA status : "Designated", "Inscribed", "Established", or "Proposed".
- 85,000 protected areas from WDPA.

Models and validation

Usage 000000 Conclusion 0000

Outline

The deforisk QGIS plugin

- Aim and specificities
- Website and documentation
- Installation
- 2 Data preparation
 - Get variables
 - Forest cover change data
 - Spatial explanatory variables
 - Models and validation
 - Benchmark model
 - Forestatrisk models
 - Moving window models
 - Validation

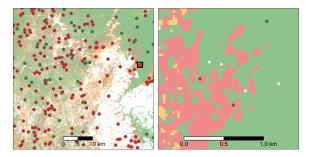
4) Usage

- Allocating deforestation
- Subnational jurisdictions
- User's data
- 5 Conclusion
 - Workshop agenda
 - Perspectives

Benchmark model

- Benchmark model or reference model.
- A reasonably good deforestation model (better than a null model).
- Assuming a decrease of deforestation with distance to forest edge (commonly admitted).
- And a *different model between subjurisdictions* (regional variability).
- See presentation Cirad and FAO. 2024. Jurisdictional risk maps for allocating deforestation.

✓ Deforisk ≜									
Get variables	Get variables Benchmark FAR models MW models Va								
Fit model to dat	ta								
Deforestation threshold (%) 99.5									
Max. distance	to forest edge	(m)	2500						
✓ calib. perio	d 🗌 h	ist. p	period						
This step also	predicts the de	efore	station risk	at t1.	Run				
Predict the defo	ion				Run				


Forestatrisk models

- Three statistical models : iCAR, GLM, RF.
- iCAR : Logistic regression with spatial random effects (iCAR process).
- GLM : Generalized Linear Model, simple logistic regression (no random effects).
- Random Forest model : random regression trees.
- Statistical models based on a sample of the observations.

		Deforisk		\$
Get variables	Benchmark	FAR models	MW models	Validation
Sample observa	ations			
N# samples	1000	D	✓ Ada	pt sampling
Random seed	1234			
Spatial cell siz	ze (km) 2			
✓ calib. perio	d his	t. period		Run
Starting value Prior Vrho	s for beta -99	oa), dist_edge, a		
Prior Vrho	-1			
☐ Variable se ✓ calib. period		hist. period		Run
Predict the defo	prestation risk			
Spatial cell siz	ze interpolatio	n (km) 0.1		
✓ iCAR mode	GLM	RF m	odel	
✓ t1 calibrati	on 🗸 t2 vali	dation		
t1 historica	l t3 fore	cast		Run

Sampling for FAR models

- We consider the forest cover change between t and t + 1.
- Stratified sampling between deforested/non-deforested pixels.
- Total number of points proportional to the forest cover (from 20,000 to 100,000 points per study area).

iCAR model

Data preparation 000000000 Models and validation

Usage 000000 Conclusion 0000

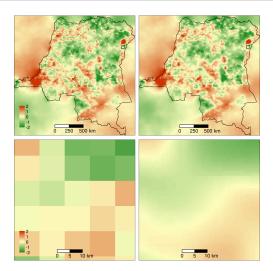
A logistic regression model with iCAR process :

$$y_i \sim \mathcal{B}ernoulli(heta_i)$$

 $ext{logit}(heta_i) = lpha + X_ieta +
ho_{j(i)}$
 $ho_{j(i)} \sim \mathcal{N}ormal(\sum_{j'}
ho_{j'}/n_j, V_{
ho}/n_j)$

Random effects $\rho_{j(i)}$ allows accounting for residual spatial variation not taken into account by model variables X_i .

Square grid of 10km cells over DRC

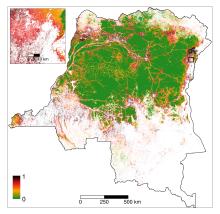

The deforisk QGIS plugin

Data preparation

Models and validation

Usage 00000 Conclusion 0000

Spatial random effects



Interpolation of spatial random effects at 1km in DRC

Usage 000000 Conclusion 0000

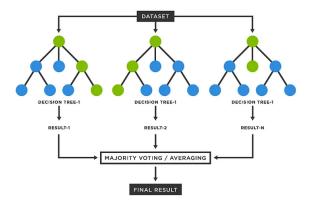
Spatial probability of deforestation

- We use the fitted model to compute the spatial probability of deforestation.
- Probabilities in [0, 1] are transformed into classes in [1, 65535].

Relative spatial probability of deforestation in DRC

GLM model

Conclusion 0000


A simple logistic regression model without random effects :

 $y_i \sim \mathcal{B}ernoulli(\theta_i)$ $logit(\theta_i) = \alpha + X_i\beta$

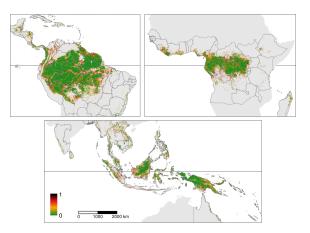
Easy to compare with iCAR to see the impact of spatial random effects.

Random Forest model

- Random Forest is an ensemble machine learning algorithm.
- Combines multiple decision trees to create a more robust and accurate predictive model.

ForestAtRisk in the tropics

- i. Consider tropical moist forest in 92 countries (119 study areas)
- ii. Estimate the current deforestation rate and uncertainty in each country
- iii. Model the spatial risk of deforestation from environmental factors
- iv. Forecast the deforestation assuming a business-as-usual scenario
- v. Consequences in terms of carbon emissions



The 119 study areas in the 3 continents

Models and validation

Usage 00000 Conclusion 0000

ForestAtRisk in the tropics

Pantropical map of the spatial probability of deforestation Article in review : 10.1101/2022.03.22.485306 https://forestatrisk.cirad.fr/maps.html

Models and validation

Usage 00000 Conclusion 0000

Moving window models

- Model proposed by previous Verra's methodology.
- Find a distance threshold to define class 1 for the deforestation risk (same thing as for the benchmark model).

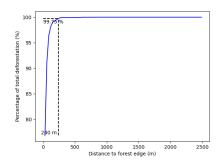


Figure – Cumulative deforestation as a function of the distance to forest edge.

		Deforisk		\$
Get variables	Benchmark	FAR models	MW models	Validation
Fit model to da	ta			
Deforestation	threshold (%)	99.5		
Max. distance	to forest edge (m) 2500		
Window sizes	(# pixels)	11, 21		
✓ calib. peri	od his	t. period		Run
Predict the defi	prestation risk			
🖌 t1 calibrat	ion 🗹 t2 valida	tion		
t1 historic	al 13 foreca	st		Run

Moving window models

- Compute a local risk of deforestation at the pixel level using a moving window.
- The moving window can be of different sizes.
- Deforestation rates in [0, 1] are converted to [2, 65535].

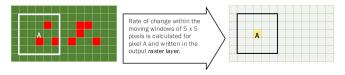
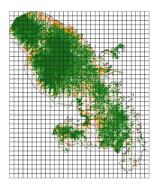



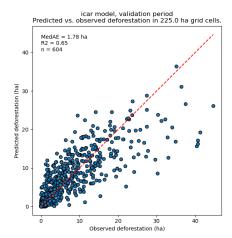
Figure – Moving window.

Usage 00000 Conclusion 0000

Validation

- Comparing predicted vs. observed deforestation (in ha) for each cell in a coarse grid.
- For a given period of time.

Ŧ		Defori	sk			8
Get variables	Benchmark	FAR r	nodels	MW models	Validation	
Model validatio	n					
Coarse grid ce	ell sizes (# pixe	els)	50, 100)		
✓ iCAR mode	I GLM		RFm	nodel 🗸	MW model	
🖌 calib. perio	d 🗸 valid. p	eriod	✓ hist.	period		
					Run	



Models and validation

Usage 000000 Conclusion 0000

Validation

- Performance indices : R^2 , and median of absolute error (MedAE).
- Computed for each model and each period (calibration, validation, historical).

Nodels and validation

Usage • 0 0 0 0 0 0 Conclusion 0000

Outline

The deforisk QGIS plugin

- Aim and specificities
- Website and documentation
- Installation
- 2 Data preparation
 - Get variables
 - Forest cover change data
 - Spatial explanatory variables
 - Models and validation
 - Benchmark model
 - Forestatrisk models
 - Moving window models
 - Validation

4 Usage

- Allocating deforestation
- Subnational jurisdictions
- User's data
- 5 Conclusion
 - Workshop agenda
 - Perspectives

Allocating deforestation

For the best model, we obtain at t3 :

- A jurisdictional map with classes of deforestation risk.
- A table with relative deforestation rates for each class.

Table – Deforestation rates at t3 for each class of deforestation risk (numbers truncated to three decimal digits).

cat	ni	di	$\theta_{m,i}$	$ heta_{a,i}$	Т	A	δ_i
1	137575	_	1.000e-06	_	_	0.09	-
2	5425	_	1.625e-05	-	_	0.09	_
3	3523	_	3.151e-05	-	_	0.09	_
4	2458	_	4.677e-05	-	_	0.09	_
5	2078	-	6.203	-	-	0.09	-

Allocating deforestation

Table – Deforestation rates at t3 for each class of deforestation risk (numbers truncated to three decimal digits).

cat	n _i	di	$\theta_{m,i}$	$\theta_{a,i}$	Т	Α	δ_i
1	137575	-	1.000e-06	-	-	0.09	-

- Considering a total **deforestation** D (in ha) for the next Y **years** at the jurisdictional level.
- Adjustment factor is $\rho = D/(A \sum_{i} n_i \theta_{m,i})$, with A the pixel area in ha.
- Absolute rate is $\theta_{a,i} = \rho \theta_{m,i}$: so that total predicted deforestation = expected deforestation.
- Deforestation density is δ_i = θ_{a,i} × A/Y. Used to predict the amount of deforestation (in ha/yr) for each forest pixel.

Models and validation

Usage ○○○●○○ Conclusion 0000

Allocating deforestation

Deforestation density is δ_i (in ha/yr) is used to predict the amount of deforestation for each forest pixel.

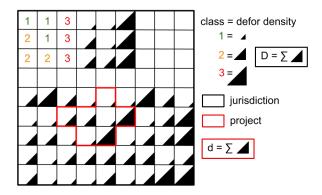
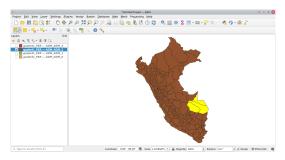



Figure – Allocating deforestation to projects within the jurisdiction.

Subnational jurisdictions

- Possibility to work with subnational jurisdictions.
- GPKG file named aoi_latlon.gpkg with two layers named aoi for the jurisdiction and subj for the subjurisdictions.
- This file can then be used with the deforisk plugin to define the area of interest (AOI).
- More details on the website page Subnational jurisdictions.

User's data

- Possibility to use user's data : national forest cover change map, other explanatory variables (e.g. mining concessions).
- Manual steps at the moment.
- Files in the data folder must be replaced with user's data.
- Additional raster variables can be added to the data folder.
- Symbolic links in data_* folders must exist.
- More details on the website page User's data.

lodels and validation

Usage 000000 Conclusion

Outline

The deforisk QGIS plugin

- Aim and specificities
- Website and documentation
- Installation
- 2 Data preparation
 - Get variables
 - Forest cover change data
 - Spatial explanatory variables
 - Models and validation
 - Benchmark model
 - Forestatrisk models
 - Moving window models
 - Validation

4) Usage

- Allocating deforestation
- Subnational jurisdictions
- User's data
- 5 Conclusion
 - Workshop agenda
 - Perspectives

Workshop agenda

Four practical sessions :

- Installing the software and run the Get Started tutorial.
- Chose a small subnational jurisdiction and select the best risk map.
- Derive the best risk map for a large jurisdiction (e.g. country scale).
- Exercices :
 - Change model parameters to see models' behavior (e.g. size of spatial cells for iCAR model).
 - Use country data (e.g. national forest cover change map).
 - Allocate future deforestation to a project.

Perspectives

- Recent plugin (first version in July 2024).
- Improvements are expected :
 - Increase computational speed (for predictions on large areas).
 - Adding more alternative models (MLP).
- Modifications from users' feedback.

... Thank you for attention ... https://deforisk-qgis-plugin.org > Articles > References > Presentations REPUBLIQUE CITAD AIM Forests